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Abstract. This paper explores several possibilities for applying branch-and-bound techniques to a
central problem class in quadratic programming, the so-called Standard Quadratic Problems (StQPs),
which consist of finding a (global) minimizer of a quadratic form over the standard simplex. Since a
crucial part of the procedures is based on efficient local optimization, different procedures to obtain
local solutions are discussed, and a new class of ascent directions is proposed, for which a conver-
gence result is established. Main emphasis is laid upon a d.c.-based branch-and-bound algorithm,
and various strategies for obtaining an efficient d.c. decomposition are discussed.
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1. Introduction

This paper explores several possibilities for applying branch-and-bound techniques
to a central problem class in quadratic programming, the so-called Standard Quad-
ratic Problems (StQPs). A StQP consists of finding a (global) maximizer of a
quadratic form over the standard simplex. Problems of such type occur frequently
as subproblems in escape procedures for general quadratic optimization, but also
have manifold direct applications, e.g., in portfolio selection and in the maximum
weight clique problem for undirected graphs. As such, StQPs are an important in-
stance for successful application of continuous-based techniques in combinatorial
optimization.

Formally speaking, we consider (global) optimization problems of the form

max{f (x) = x�Ax : x ∈ �} , (1)

where A is an arbitrary symmetric n × n matrix; the sign � denotes transposition;
and � is the standard simplex in n-dimensional Euclidean space IRn,

� = {x ∈ IRn : xi � 0 for all i ∈ {1, . . . , n} , e�x = 1} ,
where e = ∑n

i=1 ei = [1, . . . , 1]� while ei denotes the i-th standard basis vector
in IRn. More generally, the question of finding maximizers of a inhomogeneous
quadratic function x�Qx + 2c�x over � can be homogenized by considering the
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rank-two update A = Q + ec� + ce� in (1) which has the same objective values.
Finally, if a general, possibly inhomogeneous quadratic function as above is con-
sidered over a polytope P = conv(v1, . . . , vq), then every such quadratic problem
can be rewritten as a StQP (of course, this is only recommended if q is small and
full vertex enumeration is easy). See Bomze (1998) for more practical arguments
in favour of StQPs.

Of course, quadratic optimization problems like (1) — even regarding the de-
tection of local solutions — are NP-hard (Horst et al., 1995). Nevertheless, there
are several exact procedures which try to exploit favourable data constellations in
a systematic way, and to avoid the worst-case behaviour whenever possible.

The article is organized as follows: we start with a short review on traditional
local solution strategies in Section 2, and present in Section 3 a new class of local
ascent methods for StQPs. We want to stress that the popular gradient-projection
method is by far not the dominating one, and propose to use different, gradient-
like methods having much nicer features. Efficiency of these methods is important
in our context as we also need a locally optimizing procedure for obtaining upper
bounds in the d.c. approach proposed below. Note that for the problem class con-
sidered, feasibility never is a problem, so that lower bounds are readily available,
although they can be considerably improved by employing local search.

The following Section 4 reports shortly on algorithms which use strategies
differing from the branch-and-bound approach. Escape strategies like annealed rep-
lication, the G.E.N.F. algorithm, copositive programming, and the R-strategy are
mentioned for the sake of completeness, the latter in particular because it also relies
on a d.c. decomposition of the quadratic objective, which plays a central role in
the following Section 5. Here, a convergence result for general d.c.-decomposition
strategies is (re-)stated, and several variants of these are discussed. On the basis
of a recently developed local optimality criterion (Dür, 1999), and also for prac-
tical reasons, we here propose to favour the spectral decomposition and prove
that in some sense, this decomposition is minimal. However, we also specify an
example which shows that the hope for a globally minimal d.c. decomposition is
in vain. Finally, we suggest SDP-based criteria for selecting an appropriate d.c.
decomposition.

2. Traditional approaches to solve StQPs: local optimization

2.1. GRADIENT PROJECTION FOR STQPS

There are several local optimization strategies for solving StQPs. A more or less
straight-forward projected gradient method is used, e.g., in (Nowak, 1999) as a
subroutine for obtaining an improved upper bound based on a better concave over-
estimator than the usual LP-bounds. Note that we need concave overestimators
rather than convex underestimators because we maximize the objective function.

While the gradient of the objective 1
2 x�Ax is cheaply computed to Ax, the dif-

ficulty with this method is to obtain a feasible direction via projection onto the
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feasible set �. An exact but involved algorithm for the (non-linear) least-distance
projection can be found, e.g., in (Cegielski, 1993), and references therein. A clas-
sical alternative is Rosen’s gradient projection method, which (ortho-)projects lin-
early on supporting hyperplanes (or a subspace thereof of one dimension less, if
necessary) of the feasible polyhedron.

To be more precise, denote by Ik the k × k identity matrix and by Ek the k × k

matrix with unit entries only. Now suppose that we start at a feasible point x ∈ �

with xi > 0 if and only if 1 � i � k for some k ∈ {1, . . . , n}. Then the above-
mentioned orthoprojection is given by the n×n matrix Px which contains Ik− 1

k
Ek

as its leading (upper left) principal k×k submatrix, and has zero entries elsewhere.
Thus, the search direction w(x) = PxAx satisfies

wi(x) = [Ax]i − 1
k

∑k
j=1[Ax]j , if 1 � i � k ,

wi(x) = 0 else.
(2)

It is readily seen that w(x) = o if and only if x is a generalized Karush/Kuhn/Tucker
(KKT) point, i.e., a critical point for the Lagrange function

L(x, λ) = f (x) +
n∑
i=1

λixi + λn+1(e�x − 1)

where no sign restrictions on the multiplicators λi are imposed. Observe that gen-
eralized KKT points are exactly the stationary points under the replicator dynam-
ics (10) treated later in this section. There is a resolution strategy for the case
PxAx = o: if [Ax]i � 1

k

∑k
j=1[Ax]j for all i ∈ {k + 1, . . . , n} (this includes the

case k = n), then x is a usual KKT point (i.e. with the classical dual constraints
λi � 0 for all i ∈ {1, . . . , n}). Otherwise, ignore one of the binding constraints
(say, xk+1 = 0) such that [Ax]k+1 > 1

k

∑k
j=1[Ax]j , and form the resulting pro-

jection matrix P̂x which now contains Ik+1 − 1
k+1Ek+1 as its leading (upper left)

principal (k + 1) × (k + 1) submatrix, and zeroes elsewhere. Then ŵ(x) = P̂xAx
is given by (always provided that PxAx = o):

ŵi(x) = [Ax]i − 1
k+1

k+1∑
j=1

[Ax]j

= 1
k+1

(
1
k

k∑
j=1

[Ax]j − [Ax]k+1

)
, if 1 � i � k ,

ŵi(x) = k
k+1

(
[Ax]k+1 − 1

k

k∑
j=1

[Ax]j
)
, if i = k + 1,

ŵi(x) = 0 else.

(3)

The complete procedure thus reads as follows: for any x ∈ �, let

v(x) = w(x) , with w(x) as in (2), if w(x) �= o ,
v(x) = ŵ(x) , with ŵ(x) as in (3), else.

(4)
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Then, according to Theorem 10.3.4 of (Bazaraa and Shetty, 1979), v(x) represents
an ascent direction (in particular v(x) �= o) if and only if x is no KKT point
(in the traditional sense). In this paper we use ‘ascent direction’ synonymous for
‘improving feasible direction’, which means (a) that x + tv(x) ∈ � for all t > 0
small enough; and (b) that

ψ(t) = f
(

x + tv(x)
)

= x�Ax + 2t x�Av(x) + t2v(x)�Av(x) (5)

satisfies ψ(t) > ψ(0) = x�Ax for all t > 0 small enough. Feasibility of x + tv(x)
for those t means that

t(x) = min
1�i�n

{
xi

−vi(x) : vi(x) < 0

}
. (6)

is always strictly positive, provided that x ∈ � is no KKT point. Finally, denote by
t (x) the maximizer of ψ(t) over the feasible interval [0, t(x)]. Then

t (x) = min
{
t(x), x�Av(x)

−v(x)�Av(x)

}
, if v(x)�Av(x) < 0 ,

t (x) = t(x) , else.
(7)

Observe that the above case distinction is made according to whether ψ is strictly
concave or convex. Now generate a (possibly finite) sequence (xν) of feasible
points as follows: take an arbitrary starting point x0 ∈ � and put

xν+1 = xν + t (xν)v(xν) , all ν ∈ IN0 . (8)

Then by definition, xν ∈ � and f (xν+1) � f (xν) for all ν ∈ IN.

Remark 1. By compactness of � and continuity of f , we have convergence of the
objective value sequence f (xν) regardless whether or not the sequence of points
(xν) converges.

A notorious obstacle for gradient projection methods is that the map x 
→
v(x) fails to be continuous. As a consequence, no convergence results seem to
be available; see (Bazaraa and Shetty, 1979), pp. 398f.

2.2. REDUCED GRADIENTS

A familiar alternative is Wolfe’s reduced gradient method. Applied to our StQP, for
any non-stationary point x ∈ � with largest coordinate xm > 0, say, this yields

vi(x) = [Ax]i − [Ax]m , if [Ax]m � [Ax]i and i �= m,

vi(x) = xi

(
[Ax]i − [Ax]m

)
, if [Ax]m > [Ax]i , (9)

and vm(x) = −∑
i �=m vi(x). Then v(x) ∈ e⊥ and x + tv(x) ∈ � if t > 0 is small

enough, i.e., if 0 � t � t(x) with t(x) as in (6) with v(x) as in (9). Note that,
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again, we have t(x) > 0. Further, v(x) �= o if and only if x is no KKT point,
and v(x) is an ascent direction. Finally, if the sequence (xν) is generated as in (8)
with v(x) as in (9), then, contrasting to the situation in Subsection 2.1, one can
prove that every accumulation point of the sequence (xν) is a KKT point, according
to Theorem 10.4.3 in (Bazaraa and Shetty, 1979) (note the assumptions there are
satisfied for our StQP).

However, convergence of the whole sequence (xν) is, in general, not guaran-
teed (which in practice admittedly poses little problems). In the following section
we present a new class of ascent methods with the same properties, which has
the additional advantage of arbitrary high degree of smoothness. In a nutshell,
we propose to compare the coordinates [Ax]i of the gradient with the average
x�Ax = ∑

i xi[Ax]i rather than with one fixed coordinate [Ax]m.

2.3. REPLICATOR DYNAMICS AND COMPLEMENTARY PIVOTING FOR LOCAL

SOLUTIONS TO STQPS

A different method for local solution of StQPs, which recently became increasingly
popular, employs a dynamical system which plays the role of a gradient system
(and, in fact, is one, albeit not w.r.t. Euclidean geometry but the Shahshahani metric
rather): the so-called replicator dynamics. These dynamics have the advantage that
they converge, contrasting to all other local optimization methods, without any
further qualifications on the instance. Even in the generically rare case of halting at
a non-optimal point, a single perturbation immediately yields an improving local
solution. By concept (only), this is similar to the resolution strategy in (3). Again,
the key idea here is comparison of [Ax]i with x�Ax, and a corresponding update.
Observe that the maximizers of (1) remain the same if A is replaced with A+ γEn

(note that the curvature of f (x) over � remains unaffected under this transition),
where γ is an arbitrary constant, say γ = maxi,j aij + 1, so without loss of gen-
erality we can assume that all entries of A are positive, ensuring x�Ax > 0 for
all x ∈ �. Then the following dynamics is well-defined and leaves the simplex �

invariant:

xi(τ + 1) = xi(τ )
[Ax(τ )]i

x(τ )�Ax(τ )
, i ∈ {1, . . . , n} , all τ ∈ IN0. (10)

The stationary points x under (10) coincide with those x ∈ � satisfying PxAx = o
from (2), and all local solutions to the StQP (1) are among these. Of course, there
are quite many stationary points, e.g., all vertices e1, . . . , en of �. However, only
those x are serious candidates for strict local solutions which are asymptotically
stable, which means that every solution to (10) which starts close enough to x,
will converge to x as τ ↗ ∞. For proofs, more details and background, see
Bomze (1998) and the references therein. Here let us stress that, irrespective of the
curvature of the objective function, replicator dynamics yield, with probability one
regarding the choice of a starting point, in the long run local solutions rather than
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merely KKT points1 (like all other local optimization procedures covered here),
provided a simple condition on A (namely, that no principal minor vanishes) is
satisfied (Bomze and Stix, 1999), which is generically true. Interestingly enough,
a similar genericity result is used in Section 3 below, there to ensure convergence
of the whole sequence (xν) rather than of a subsequence.

Another attack rephrases the first-order conditions for local optimality into a
linear complementarity problem and solves this with pivoting methods à la Lemke.
Surprisingly enough, the points obtained were always (good) local solutions, at
least for the special case of the maximum weighted clique problem. Decisive for
this success seems to be an intricate degeneracy resolution strategy, combined
with a one-step look ahead technique, which applies also to the general StQP (1),
without exploiting the discrete structure information of the (combinatorial) graph
theoretic background. Note that theory would predict KKT points (only) as the
outcome of the algorithm rather than local solutions. As a detailed description of
this procedure would be beyond the scope of this paper, let us refer to (Massaro et
al., 2001) for more detail.

3. A new class of ascent methods for StQPs, and a general convergence result

The class of ascent directions we now propose can be viewed as a compromise
between the (non-smooth) Wolfe-direction in (9) and the smooth replicator dynam-
ics (10). It also involves the gradient Ax, but in a way inspired to some extent by the
notion of payoff-monotone dynamics in evolutionary game theory (Weibull, 1995).
The formula we employ is much older than these recent developments, and can be
traced back to the method of existence proof for Nash equilibria via Brouwer’s
fixed point theorem.

Let ϕ : IR → IR be an arbitrary function satisfying ϕ(t) = 0 if t � 0 but
ϕ(t) > 0 if t > 0. Examples are abundant: from the truncated sign function ϕ(t) =
[sign t]+ (which is elementary but discontinuous) through ϕ(t) = [t+]β (with a
degree of smoothness which increases with β > 0) to the C∞-smooth function
ϕ(t) = exp(− 1

t
) if t > 0, and ϕ(t) = 0 if t � 0. Here and in the sequel, we denote,

for a real number t , by t+ = max{t, 0} and by t− = max{−t, 0} so that t = t+ − t−
and t+t− = 0.

Now denote by ri(x) = [Ax]i − x�Ax, all i ∈ {1, . . . , n} and by

vi(x) = ϕ
(
ri(x)

)
− σ (x)xi , i ∈ {1, . . . , n} , (11)

with the convention

σ (x) =
n∑

j=1

ϕ
(
rj (x)

)
.

1 Of course, in case of concave maximization this distinction vanishes as all KKT points are global
solutions then.
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The latter enforces v(x) ∈ e⊥ for all x ∈ �. Further, defining t(x) as in (6) with
the new definition of v(x) from (11), we see that v(x) is an ascent direction unless
x is a KKT point:

THEOREM 1. Let x ∈ �. For v(x) as in (11), we have v(x) �= o if and only if x is
not a KKT point. In this case,
(a) σ (x) > 0;
(b) t(x) � 1

σ(x) ;
(c) v(x) is an ascent direction.

Proof. First observe that the KKT conditions on x for the StQP are equivalent to
the Nash equilibrium requirement [Ax]i � x�Ax for all i, with equality for those
i such that xi > 0, see, e.g., Bomze (1998). Hence ri(x) � 0 for all i at KKT

points x , so that ϕ
(
ri(x)

)
= 0 and also σ (x) = 0, whence v(x) = o follows

readily. To show the converse, note that vi(x) = 0 means ϕ
(
ri(x)

)
= σ (x)xi . Now

if σ (x) were strictly positive, then ri(x) > 0 also would hold for all i with xi > 0,
which would yield [Ax]i > x�Ax for all such i, contradicting x�Ax = ∑

i xi[Ax]i :
thus we obtain σ (x) = 0, which entails ri(x) � 0 or [Ax]i � x�Ax for all i, with
equality if xi > 0 by the same averaging argument as above. Thus x must be a KKT
point if v(x) = o, which in turn is, as established just now, equivalent to σ (x) = 0.
Therefore also assertion (a) is proved. Now if x ∈ � is an arbitrary non-KKT point,

then vi(x) < 0 implies xi > 0 because of ϕ
(
ri(x)

)
� 0. Hence

xi

−vi(x) = xi

σ (x)xi − ϕ (ri(x))
� 1

σ (x)

for all i such that vi(x) < 0, which establishes (b). Finally, to show (c), note that by
virtue of (5), the derivative of ψ at t = 0 equals ψ̇(0) = 2x�Av(x). By symmetry
of A, we get

x�Av(x) =
n∑

i,j=1

xiaij

[
ϕ
(
rj (x)

)
− σ (x)xj

]

=
n∑

j=1

ϕ
(
rj (x)

) [
n∑
i=1

ajixi − x�Ax

]
(12)

=
n∑

j=1

ϕ
(
rj (x)

)
rj (x) � 0

with equality if and only if all ϕ
(
rj (x)

) = 0, which is equivalent to the KKT
condition. Hence for every non-KKT point we get ψ̇(0) > 0. �

Note that the presented class of ascent directions applies to general quadratic
objective functions irrespective of curvature. However, the convex case (concave
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maximization in our case) deserves special attention: first, we then know the KKT
points are global solutions; second, these instances will appear as subproblems in
the d.c. approach below. So before we proceed to prove a general convergence
result for any curvature, we shortly digress to establish a helpful result which
provides a shortcut to avoid calculating t(x) via (6), i.e. we provide conditions
sufficient for t (x) = −x�Av(x)/v(x)�Av(x):

PROPOSITION 2. Suppose that A is negative-semidefinite, and that v�Av < 0
holds for all v ∈ e⊥. Then if

∑
j [Ax]j ϕ

(
rj (x)

)
� 0 we have

t (x) = x�Av(x)
−v(x)�Av(x)

.

Proof. All we have to show is that the latter quantity does not exceed t(x). Now put
zj = ϕ

(
rj (x)

)
and z = [zj ] ∈ IRn, to arrive via (12) at

v(x)�Av(x) = σ 2(x)x�Ax − 2σ (x)
n∑

i,j=1

xiaijϕ
(
rj (x)

) + z�Az

= σ 2(x)x�Ax − 2σ (x)
n∑

j=1

[Ax]j ϕ
(
rj (x)

) + z�Az

= −σ (x)x�Av(x) − σ (x)
n∑

j=1

[Ax]j ϕ
(
rj (x)

) + z�Az

� −σ (x)x�Av(x)

by assumption, so that finally we get via Theorem 1(b)

x�Av(x)
−v(x)�Av(x)

� 1

σ (x)
� t(x) .

Hence the assertion. �
The next step is standard: given the definition of v(x) as in (11), generate the

sequence (xν) as in (8). Now we are ready to establish the convergence result:

THEOREM 3. If the function ϕ is chosen continuous, then any accumulation point
x of the sequence (xν) satisfies the KKT condition.

Proof. Suppose that xνk → x as k → ∞ along some subsequence (νk). Put vk =
v(xνk ) and tk = t (xνk ) as well as σk = σ (xνk ). By continuity, vk → v(x) and
σk → σ (x) as k → ∞. Now, if x were no KKT point, then σ (x) > 0 and v(x) �= o
by Theorem 1. Further, during the course of iterations, no xν has been a KKT point,
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since otherwise, the sequence would have stopped there. We now show that there
is a constant ρ > 0 such that

tk � ρ for infinitely many k . (13)

Obviously, we are done if tk = t(xνk ) for infinitely many k, since in this case
Theorem 1(b) even yields tk � 1

σk
� 1

2σ(x) for infinitely many k. So let us assume

the contrary, namely that tk �= t(xνk ) for all k � k, which, by (7), yields,

tk = t (xνk ) = x�
νk
Avk

−v�
kAvk

for all k � k ,

for some k large enough. Further, t (xνk ) �= t(xνk ) implies via (7) v�
kAvk < 0

for all k � k, yielding v(x)�Av(x) � 0 by continuity. If v(x)�Av(x) < 0, then
a similar limit argument as above applies to arrive via tk → x�Av(x)

−v(x)�Av(x) > 0

at condition (13).2 If, however, v(x)�Av(x) = 0, then choose an arbitrary small
number δ > 0 and η > 0 so small, that x�Av(x)−δ

η
> t(x) + δ. Next observe

that lim supk t(xνk ) � t(x), because for k large enough, we have vi(xνk ) < 0
whenever vi(x) < 0 by continuity. Thus we may also pick k so large that both
t(xνk ) < t(x)+ δ and x�

νk
Avk � x�Av(x)− δ, and also −v�

kAvk � η hold (the latter
is possible since limk v�

kAvk = v(x)�Av(x) = 0). Now

tk = x�
νk
Avk

−v�
kAvk

�
x�
νk
Avk
η

� x�Av(x) − δ

η
> t(x)+ δ � t(xνk )

which is absurd. Hence (13) is established. We now are in the situation of Lemma
10.2.6 in (Bazaraa and Shetty, 1979), but for the readers’ convenience we specify
a slightly more direct argument here. Denote by

ψk(t) = f (xνk + tvk) = x�
νk
Axνk + 2tx�

νk
Avk + t2v�

kAvk , t � 0 .

Then by definition and from (13),

f (xνk+1) = ψk(tk) � ψk(ρ) = f (xνk ) + ρ[2xνk
�Avk + ρ v�

kAvk]
for all k large enough. Decreasing ρ > 0 if necessary, we may and do ensure that
−ρ v�

kAvk � x�
νk
Avk for all such k (pass to the limit as k → ∞, and define ρ in

terms of x�Av(x) > 0 and v(x)�Av(x)). Obviously, still ψk(tk) � ψk(ρ) holds.
Thus we arrive at

f (xνk+1)− f (xνk ) � ρ x�
νk
Avk � ρ

2
x�Av(x) > 0

for infinitely many k, which contradicts the convergence of the objective values
f (xν) as ν → ∞ addressed in Remark 1 at the end of Subsection 2.1. Therefore x
must be a KKT point and the convergence result is proved. �

2 Recall that by (12), x�Av(x) > 0 if x is no KKT point.
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Again, it should be stressed that, as in Wolfe’s reduced gradient algorithm,
convergence of the whole sequence (xν) is not ensured, whereas trajectories under
the replicator dynamics (10) always converge. However, there is a simple condition
which is generically satisfied, ensuring convergence for a considerably larger class
of methods, applied to general problems to maximize a continuous function f over
a compact feasible set M: let us call an iterative algorithm ‘an iteratively improving
KKT solver’, if it generates, for any starting point x0 ∈ M, a sequence (xν) of
feasible points in M satisfying

f (xν+1) � f (xν) for all ν ∈ IN , (14)

and such that any accumulation point of this sequence is a KKT point. Both the
methods in Subsection 2.2 and the ones in this section (with continuous ϕ) are
iteratively improving KKT solvers for the StQP (1) in this sense.

PROPOSITION 4. If any two different KKT points x and y have different objective
values, f (x) �= f (y), then every iteratively improving KKT solver converges, as
ν → ∞, to one of the KKT points.

Proof. Suppose x and y were two different accumulation points of (xν). Then (14)
guarantees by monotonicity and continuity of the objective f (xν) → f (x) = f (y)
as ν → ∞, cf. Remark 1 at the end of Subsection 2.1. This contradicts the as-
sumption. Hence there is at most one accumulation point of (xν). On the other
hand, compactness of M ensures there is at least one, so that the sequence (xν) has
a limit, which by the property of KKT solvers must be a KKT point. �

In some sense, this result is similar to the well-known observation that branch-
and-bound procedures converge to the global optimizer, given this is unique (Horst
and Tuy, 1993).

As a consequence, we obtain convergence of Wolfe’s reduced gradient proced-
ure and the new methods proposed in this section, if x�Ax �= y�Ay is ensured for
all KKT points x �= y of (1). Now it can be shown that the set of symmetric n × n

matrices satisfying this condition is open and dense in the space of all symmetric
n× n matrices.

As similarity of numerical complications with either of the preceding different
algorithms is not easily foreseen, it is not clear which of these local optimization
methods are preferable from a practical point of view. A ranking between them
is best established by a large empirical study which lies beyond the scope of this
paper.

4. Traditional approaches to solve StQPs: escape strategies and other global
optimization methods

The procedures described in the sequel all have in common that they are based upon
some (or a special) local optimizer, and then they try to improve the quality of the
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result obtained (or, in the ideal case, provide a certificate for global optimality of
the current solution).

Following a perturbation approach similar to those below (see Subsection 5.2),
in (Bomze et al., 2001) an escape is attempted by varying the objective function
‘towards convexity’, but with the aim to keep the most efficient local solutions
while the others should be avoided. In a nutshell, this so-called ‘annealed replic-
ation’ approach consists of restarting the locally optimizing replicator dynamics
with varying perturbation parameter, which is bounded a priori as to guarantee the
above-mentioned positive features.

A totally different strategy is followed by ‘Copositive Programming’ (Bomze et
al., 2000), where an StQP is reformulated into a linear optimization problem over a
convex matrix cone, and interior primal-dual steps borrowed from the semidefinite
programming (SDP) framework are used as escape step.

In a similar vein, the SDP relaxation procedures of (Quist et al., 1998) try to
improve inefficient local solutions.

Based on global optimality conditions for general quadratic problems, and using
block pivoting strategies, the G.E.N.F. algorithm introduced in (Bomze and Stix,
1999) produces either a certificate of global optimality, or delivers an improving
feasible point, by a recursive procedure which decomposes the master problem into
a series of considerably smaller subproblems of the same type, so as to employ the
same locally optimizing routines.

Yet another approach is reported in Kuznetsova and Strekalovsky (2001) who
use a particular d.c. decomposition of the objective function in conjunction
with sublevel global optimality conditions. The resulting, so-called improved ‘R-
strategy’ has nothing in common with branch-and-bound procedures, but yields
results of considerable quality for medium-sized instances of the maximum-clique
problem from the DIMACS testbed (Johnson and Trick, 1996).

Using SDP technology for obtaining good upper bounds, branch-and-bound
ideas for StQPs are explicitly introduced in (Nowak, 1999). Contrasting with the
d.c. approach proposed below, this paper concentrates of improving concave over-
estimation procedures.

A different, and apparently new, branch-and-bound approach, is presented in
(Stix, 2000) and more generally in (Stix, 2001), where local search for a maximum
clique is combined with a so-called ‘target-branch-and-bound’ strategy. In essence,
this means that the usual problem tree is re-organized such that in a breadth-first
search, the most promising regions are processed first. The author reports suc-
cessful application, although he employs very rough upper bounds obtained from
colouring heuristics. Here, the combinatorial aspect of the problem is the key for
the branch-and-bound attack and also here, no d.c. decomposition is used.

Of course, this account is not exhaustive, because a bibliographic survey is
rather beyond the scope of this article. A (most probably incomplete) list of other
references to branch-and-bound methods for quadratic problems, which in one
sense or another come close to the approach treated here, is Horst and Thoai,
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Raber, Hansen et al., An and Tao, An and Tao, Phong et al. (1996, 1998, 1993,
1998, 1997, 1996). The first two articles in this list combine LP bounds with
simplicial decomposition, while Hansen et al. and An and Tao (1993, 1998) treat
quadratic problems over a hypercube, the former with derivatives, the latter with
an ellipsoidal approach, which is presented in a more general setup for general
polytopes in An and Tao (1997). Concave overestimation techniques are employed
in Phong et al. (1996).

5. D.C. decomposition for StQPs

5.1. BASIC IDEAS AND RESULTS

The central idea is very simple, and motivated by the observation that the LP
bounds widely used in branch-and-bound algorithms are often quite inefficient
(Nowak, 1999): decompose the indefinite n × n matrix A = B − C such that B
and C are positive-semidefinite (psd) matrices, so that x�Bx and x�Cx are convex
functions. Then for any simplex X = conv(v1, . . . , vn)

β(X) = max{x�Bx : x ∈ X} = max
{
v�
i Bvi : i ∈ {1, . . . , n}} (15)

while every local solution x̄ ∈ X to the problem

γ (X) = min{x�Cx : x ∈ X} (16)

is automatically a global one. Therefore, any of the locally optimizing procedures
described in Sections 2 and 3, applied to

min{x�Cx : x ∈ X} = − max{y�(−V �CV )y : y ∈ �}
with V = [v1, . . . , vn], yields γ (X). Thus

α(X) = β(X) − γ (X) (17)

is an easily obtainable upper bound for max{x�Ax : x ∈ X}.
We employ a local lower bound δ(X) with the property that

δ(Xk) → (x∗)�A(x∗) whenever
∞⋂
k=1

Xk = {x∗} . (18)

Any feasible point x ∈ X gives such a lower bound δ(X) = x�Ax, for instance. An
alternative would be to put δ(X) equal to the objective result of one of the locally
optimizing procedures described in Sections 2 and 3. As always, the final choice of
method depends on the balance between quality and effort. However, the better the
quality of the locally optimizing procedure, the more cutting power is to be expec-
ted and the less subproblems will be generated. Compromises are available with
every ‘any-time’ local optimizer (i.e., those maintaining feasibility during all itera-
tions). Fortunately, all local optimization methods covered here enjoy this property,
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with the exception of Lemke’s complementary pivoting algorithm, since the latter
does not generate (primally) feasible paths. The global lower bound needed in the
algorithm then results by taking the largest of the δ(X) values obtained so far.

As the general roster of a branch-and-bound scheme applies, see, e.g., Horst
and Tuy (1993) or Horst et al. (1995), we refrain from repeating it here. To select a
subsimplex X for next bisection, usually an X with largest α(X) is chosen, in the
hope to improve upper bounds as quickly as possible. Alternatively, one may pick a
subsimplex X with largest local lower bound δ(X), to obtain at an early stage good
intermediate results in case of premature abortion of the procedure. Regardless of
the choice of these variants, we have the following convergence result which is
more or less stated and proved in Proposition 3.15 of Horst et al. (1995). We repeat
the main arguments here for the readers’ convenience.

THEOREM 5. Define α(X) as in (17) via (15) and (16). Then the branch-and-
bound algorithm using simplicial bisection along the longest edge with upper bounds
α(X) and any choice of lower bounds δ(X) satisfying (18) converges.

Proof. In light of the general results in Chapter IV of Horst and Tuy (1993), see
also Theorem 3.8 of Horst et al. (1995), all we have to show is the following:
if Xk is an exhaustive sequence of simplices, i.e., shrinking to a singleton {x∗},
then α(Xk) → (x∗)�A(x∗) as k → ∞. But this is evident as β(Xk) obviously
converges to (x∗)�B(x∗) while γ (Xk) → (x∗)�C(x∗). Further, also δ(Xk) →
(x∗)�A(x∗) by assumption (18), which yields α(Xk) − δ(Xk) → 0. Now exhaust-
iveness of the simplicial bisection, which means halving the longest edge, is shown
in Proposition 3.14 of Horst et al. (1995), and the claimed assertion follows. �

Instead of halving the longest edge, one may bisect it at some ratio ranging in a
fixed closed interval excluding 0 and 1, without losing exhaustivity (Horst, 1997).
More sophisticated exhaustive subdivision procedures may be found in (Horst et
al., 1992; Horst and Tuy, 1993). For variants thereof which also may involve the
objective see Horst and Thoai (1989).

5.2. VARIANTS OF D.C. DECOMPOSITIONS

As usual in d.c. programming, the decomposition A = B − C is by no means
unique. One possibility is the perturbation decomposition B = µIn and C =
µIn−A where µ � 0 is chosen large enough to make C psd. The smallest possible
value is of course the spectral bound µ = [λmax(A)]+ with

λmax(A) = max{λ : λ is an eigenvalue of A} .
Since upper bounds of the spectrum are cheap, this method seems to be of advant-
age for very large instances. Further, β(conv(v1, . . . , vn)) = µmax{‖vi‖2 : i ∈
{1, . . . , n}} is very easy to update while

γ (conv(v1, . . . , vn)) = µmin{x�V �V x : x ∈ �} .
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Also other positive-definite perturbation matrices D could replace In: B = µD

and C = µD−A, where µ now must be an upper bound for the Rayleigh quotient
maxx �=o

x�Ax
x�Dx . An alternative perturbation decomposition may employ B = A+µD

and C = µD. It is merely a question of notation which of these variants are chosen:
putting µD = A+µD or µD = µD−A does the trick. Differences between these
two variants mainly occur in numerics, e.g., if D (or D) are sparse.

A second strategy could employ the spectral d.c. decomposition: if A = ULU�
with U being a orthonormal n × n matrix consisting of eigenvectors of A while
L = diag(λ1, . . . , λn) is a diagonal matrix made from the eigenvalues of A, then
A = B − C is a d.c. decomposition with B = UL+U�while C = UL−U� with

L± = diag([λ1]±, . . . , [λn]±) .
Of course, then, L± are psd, and so are B and C, while L = L+ − L− im-
plies A = B − C. A drawback of this approach is the necessity to determine
the full spectral information about A. On the other hand, this d.c. decomposition
is, within a ‘natural’ class of d.c. decompositions, minimal in the sense of (Dür,
1999). There, a local optimality condition for d.c. functions is presented in terms
of ε-subdifferentials, which gives a third aspect of quality, besides size of basin of
attraction, and functional quality.

We now establish the addressed minimality result for the spectral decomposi-
tion:

THEOREM 6. Consider two different d.c. decompositions of

f (x) = x�Ax = gspec(x)− hspec(x) = g(x)− h(x) ,

where

gspec(x) = x�A+x , hspec(x) = x�A−x

with A± = UL±U�and

g(x) = x�Bx , h(x) = x�(B − A)x ,

respectively, where BA = AB and both B and B − A are psd matrices, so that
g, gspec, h, hspec are convex functions.
Then gspec(x) � g(x) and hspec(x) � h(x), and also both g − gspec and h − hspec

are convex functions.

Proof. If B commutes with A, then B = UMU� with U containing the (common)
orthonormal eigenvectors of A and B while M = diag(µ1, . . . , µn) contains the
eigenvalues of B. Now if B is psd, then necessarily µi � 0 for all i ∈ {1, . . . , n}.
Similarly, since B − A is also psd, this means µi − λi � 0, i.e., µi � [λi]+ for all
i ∈ {1, . . . , n}, which in turn entails psdness of the matrix B−A+. Hence g−gspec

must be convex, and also non-negative. Now h− hspec = (g − f )− (gspec − f ) =
g − gspec, so that the result for the concave parts follows readily. �
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Taking µ � [λmax(A)]+ and B = µIn = Udiag(µ, . . . , µ)U�, we readily see
that the perturbation approach addressed above falls into this class of commuting
decompositions, so that we have

hpert(x) − hspec(x) = gpert(x) − gspec(x) � 0

if

gpert(x) = µ‖x‖2 and hpert(x) = µ‖x‖2 − x�Ax .

Similar to the above result, we obtain the following

LEMMA 7. Suppose that A0± are psd with A = A0+ −A0−, and such that A± −A0±
are also psd. Then necessarily A0± = A±.

Proof. If ui is an eigenvector of A corresponding to a nonnegative eigenvalue λi �
0, then by assumption,

0 � ‖
√
A0−ui‖2 = u�

i A
0
−ui � u�

i A−ui = 0 ,

(with
√
A0− denoting the symmetric square-root factorization of the psd matrix A0−),

so that A0−ui = o follows. But then

λiui = Aui = A0
+ui − o = A0

+ui .

Similarly,A0+ui = o if λi < 0. Hence bothA0± have the same eigenvectors as A(and
hence as A±), and the same eigenvalues as A±, respectively. Thus A0± = A±. �

One may now hope that there is a "global" answer to the question of minimality.
However, the following example shows that this cannot happen in more than one
dimension:

Example 1. Let

A =
[

0 1
1 0

]
with A+ = 1

2

[
1 1
1 1

]
and B =

[
1
3 1
1 7

2

]
.

Then both B and B − A are psd, but

B − A+ =
[− 1

6
1
2

1
2 3

]
is obviously indefinite.

PROPOSITION 8. There is no ‘globally minimal’ d.c. decomposition of quadratic
functions defined on IRn if n � 2, in the sense of Theorem 6 above.
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Proof. Without loss of generality we may and do assume that n = 2. Now suppose
thatA = A0+−A0− yields a globally minimal d.c. decomposition of x�Ax whereA is
as in Example 1. Then, by definition of minimality, A+ −A0+ and also A− −A0− are
psd. But then A0± = A±, by Lemma 7. On the other hand, with B as in Example 1,
also A = B + (A − B) yields a d.c. decomposition, we would arrive at psdness
of B − A0+ (and also (A − B) − A0−) by minimality of A0± and thus at psdness of
B − A+, which as shown is absurd. �

The following subsection provides a possible way out of this dilemma, to se-
lect a d.c. decomposition which yields a minimal upper bound for α(�) from
Subsection 5.1.

5.3. SELECTING A D.C. DECOMPOSITION WITH MINIMAL UPPER BOUNDS VIA

SDP

In the sequel, upper bounds for α(�) are proposed which can be minimized to
select a d.c. decomposition. This can be accomplished by SDP procedures which
become increasingly popular nowadays. Note that it is not suggested to replace
α(X) in the branch-and-bound procedure with this new upper bound, but rather
use it as a guideline to select one out of many possible d.c. decompositions. This is
important as the obtained upper bound is worse (i.e., larger than) α(�), and by no
means cheaper to obtain.

Now denote by

λmin(C) = min{λ : λ is an eigenvalue of C} .
PROPOSITION 9. Given a d.c. decomposition A = B −C with B and C psd, we
have

α(�) � λmax(B)− 1
n
λmin(C).

Proof. First observe that

x�Cx � λmin(C)‖x‖2 � λmin(C)
1
n

for all x ∈ �, (19)

because ‖x‖‖e‖ � x�e = 1 holds for all x ∈ � due to the Cauchy/Schwarz
inequality, and because ‖e‖ = √

n. Further, note that

x�Bx � λmax(B)‖x‖2 � λmax(B) for all x ∈ � . (20)

Combining both estimates yields the result. �
It now remains to reformulate the quest of tighter (i.e., smaller) upper bounds

as a semidefinite program: to this end, observe that

λmin(C) = max{t � 0 : (C − tIn) is psd } ,
λmax(B) = min{s � 0 : (sIn − B) is psd } . (21)
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Now put Y = sIn − B and Z = C − tIn. Then a minimal upper bound in the
sense of Proposition 9 is attained if and only if (s, t, B, Y,Z) solve the following
optimization problem:

s − 1
n
t → min !

B + Y − sIn = O

B − Z − tIn = A

s, t � 0 , B, Y,Z are psd.

(22)

Problem (22) involves decision variables which are organized in symmetric
n×nmatrices (B, Y,Z), and constraints which are formulated as definiteness con-
ditions on these matrices, plus linear constraints, and a linear objective. Hence (22)
is a semidefinite program (SDP). Note that all the constraints in the last line of (22)
can be compactly reformulated as psdness of the block-diagonal (3n+2)×(3n+2)
matrix

s

t

B

Y

Z


where all entries not specified are zero. This reformulation may be useful for
primal–dual solution approaches. There is a fully established duality theory for
optimization problems of this kind, and interior-point methods have proven to be
a powerful tool for solving them. For an excellent recent reference see Renegar
(2001).

From a solution (s∗, t∗, B∗, Y ∗, Z∗) of (22), psd B∗ and C∗ = Z∗ + t∗In can be
used for the d.c. decomposition upon which the calculations of α(X) = β(X) −
γ (X) in Subsection 5.1 are based. The rationale behind this proposal is the hope
that not only α(�) � s∗− 1

n
t∗ is as tight as possible but also the upper bounds α(X)

for many of the subsimplices X generated by the branching part of the algorithm.
Finally, we present a lower bound ρ(C) on γ (�)which is tighter than 1

n
λmin(C)

from (19). To this end we replace In by 1
n
En, a psd matrix of rank one:

PROPOSITION 10. If C is psd, define

ρ(C) = max{r � 0 : C − rEn is psd } . (23)

Then

x�Cx � ρ(C) � 1
n
λmin(C) for all x ∈ � .
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Proof. We have to establish two inequalities. To prove the leftmost one, observe
that psdness of C − rEn implies x�Cx − r = x�(C − rEn)x � 0 for all x ∈ �, as
x�Enx = (e�x)2 = 1 for all such x. The rightmost inequality requires a bit more:
first, note that the matrix P = In − 1

n
En (the orthoprojection matrix onto e⊥) is

psd. Hence, if C − tIn is psd for some t � 0 and r = t
n
, then

C − rEn = C − tIn + tIn − t
n
En = C − tIn + tP is psd.

Thus {t � 0 : C − tIn is psd } ⊆ {t � 0 : C − t
n
En is psd }, hence

max{t � 0 : C − tIn is psd } � nmax{ t
n

� 0 : C − t
n
En is psd } ,

and the latter expression equals nρ(C). So we obtain 1
n
λmin(C) � ρ(C) with the

help of (21). �
Note that the latter inequality is strict, e.g., for C = En where 1

n
λmin(En) = 0 <

1 = ρ(En). Now Proposition 10 implies

α(�) � λmax(B)− ρ(C) � λmax(B)− 1
n
λmin(C) ,

and we can try to minimize the tighter bound (center term above): put again Y =
sIn − B but now Z = C − rEn to arrive at the following SDP which refines (22):

s − r → min !
B + Y − sIn = O

B − Z − rEn = A

r, s � 0 , B, Y,Z are psd.

(24)

As with (22), from an optimal solution (r∗, s∗, B∗, Y ∗, Z∗) to (24) extract positive
semidefinite matrices B∗ and C∗ = Z∗ + r∗En which give a (hopefully) effective
d.c. decomposition of x�Ax in the sense that α(�) � s∗ − r∗.

5.4. FINAL REMARKS ON ALTERNATIVE BRANCH-AND-BOUND STRATEGIES

VIA SDP

At the end of this paper, let us address the question of attacking problem (1) by a
branch-and-bound strategy aiming directly at A rather than using a d.c. decompos-
ition, but also using SDP technology for obtaining upper bounds.

Remark 2. For an alternative upper bound α̃(X) of the objective on a subsimplex
X, we could employ (20) for V �AV instead of B (which holds irrespective of
definiteness):

α̃(X) = λmax(V
�AV ) with V = [v1, . . . , vn] if X = conv(v1, . . . , vn).

Then maxx∈X x�Ax = maxy∈� y�(V �AV )y � α̃(X) as in (20), where α̃(X) can be
determined also via an SDP, namely

s → min !
S − sIn = −V �AV

s ∈ IR , S is psd.
(25)
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Now transition from Xk to a subsimplex Xk+1 generated by bisection of Xk

means a rank-two update of the corresponding matrix V = Vk, giving Vk+1 = Vk +
fg� (if the i-th vertex Vkei is replaced with the midpoint of the edge to the vertex
Vkej , then f = 1

2Vk(ej − ei ) and g = ei). Thus the right-hand side Ak = −V �
k AVk

of (25) undergoes a symmetric rank-two update

Ak+1 = Ak − [gf�AVk + V �
k Afg�] − (f�Af)gg�. (26)

Still, tight quantitative (right-hand side) sensitivity results for SDPs under updates
of this form are by no means immediate. Hence for practical purposes, a d.c. de-
composition (possibly obtained by using (24) only once) yielding bounds α(X)

as in Subsection 5.1 seems to be preferable than recalculating the alternative up-
per bounds α̃(Xk) by solving (25) anew for every subsimplex Xk generated by
branching. Returning to the special global case X = �, note that

α̃(�) = λmax(A) � λmax(B)− λmin(C) � λmax(B)− 1
n
λmin(C) ,

refining the bound specified in Proposition 9. However, α̃(�) may exceed α(�)

and even the sharper bound λmax(B) − ρ(C) from Proposition 10 (for instance, if
B = O and C = En: note that then −V �AV = V �EnV = En = −A for all
subsimplices and similarly for B and C, because of EnV = ee�[v1, . . . , vn] =
ee� = En, so that the relation λmax(A) = 0 > −1 = λmax(B) − ρ(C) holds
throughout all subsimplices).

Remark 3. Now consider the bound ρ(C) defined in (23): by the same argument
that led to the proof of Proposition 10, we have

max
x∈�

x�Ax = − min
x∈� x�(−A)x � −ρ(−A) ,

so that an alternative upper bound is

α̂(X) = −ρ(−V �AV ) .

As with α̃(X), also this bound α̂(X) can be expressed as the optimal objective
value of a suitable SDP. The above caveat regarding efficient sensitivity results
under rank-two updates (26) of course applies also to this SDP, so that tedious
repeated calculations of α̂(Xk) seemingly cannot be avoided.

As an ultimate remark, note that the common observations in Remarks 2 and 3
above also reflect one reason why we did, in this paper, not restrict analysis to the
curvature of the objective on the hyperplane e⊥ rather than on the full IRn: indeed,
e.g. x�Bx is convex on � if and only if PBP is psd where P = In − 1

n
En is the

orthoprojector onto e⊥. But as

P(V �BV )P �= V �PBPV = V �BV − 1
n
[EnBV + V �BEn] + e�Be

n2 En

in general (the latter equality is due to PV = V − 1
n
En, while there is no similar

result for VP ), this relative convexity argument seems to be of minor relevance in
the present branch-and-bound concept.
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6. Conclusion

In this paper, we have discussed some old and new local optimization proced-
ures for a central class in quadratic optimization, the standard quadratic problems
(StQP). The reason why we paid so much attention on these in a paper on global
optimization is straightforward: we need some of them for obtaining high-quality
bounds for branch-and-bound algorithms for StQPs based on d.c. decompositions,
for which we considered different variants. Some of them are comparable in terms
of minimal curvature, but it turns out that there is no globally optimal decom-
position in this sense. Finally, we hinted at the question how to obtain d.c. de-
compositions with tighter upper bounds via semidefinite programming. Which of
these variants should be chosen remains to be decided, possibly via large empirical
studies that, hopefully, will be initiated by this article.

7. Acknowledgements

The author is indebted to Mirjam Dür and Grete Einsiedler-Mucha for stimulat-
ing discussions and valuable suggestions, as well as to an anonymous referee for
helpful remarks.

References

An, L. T. H. and Tao, P. D. Solving a class of linearly constrained indefinite quadratic problems by
DC algorithms. J. Global Optimiz. 11: 253–285, 1997.

An, L. T. H. and Tao, P. D. A branch and bound method via d. c. optimization algorithms and
ellipsoidal technique for box constrained nonconvex quadratic problems. J. Global Optimiz. 13:
171–206, 1998.

Bazaraa, M. S. and Shetty, C. M. Nonlinear programming — theory and algorithms. Wiley, New
York, 1979.

Bomze, I. M. On standard quadratic optimization problems. J. Global Optimiz. 13: 369–387, 1998.
Bomze, I. M., Budinich, M., Pardalos, P. M. and Pelillo, M. The maximum clique problem. In D.-Z.

Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization suppl. Vol. A:1–74.
Kluwer, Dordrecht, 1999.

Bomze, I. M., Budinich, M., Pelillo, M. and Rossi, C. Annealed replication: a new heuristic for the
maximum clique problem. To appear in: Discrete Applied Math., 2001.

Bomze, I. M., Dür, M., de Klerk, E., Quist, A. J., Roos, C. and Terlaky, T. On copositive programming
and standard quadratic optimization problems. J. Global Optimiz. 18: 301–320, 2000.

Bomze, I. M. and Stix, V. Genetical engineering via negative fitness: evolutionary dynamics for
global optimization. Annals of O.R. 89: 279–318, 1999.

Cegielski, A. The Polyak subgradient projection method in matrix games. Discuss. Math. 13: 155–
166, 1993.

Dür, M. A Note on Local and Global Optimality Conditions in D.C.-Programming. Research Report
No. 56, Dept. of Statistics, Vienna Univ. Econ., 1999.

Hansen, P., Jaumard, B., Ruiz, M. and Xiong, J. Global minimization of indefinite quadratic functions
subject to box constraints. Nav. Res. Logist. 40: 373–392, 1993.

Horst, R. On generalized bisection of n-simplices. Math. of Comput. 66: 691–698, 1997.
Horst, R., Pardalos, P. M. and Thoai, V. N. Introduction to Global Optimization. Kluwer, Dordrecht,

1995.



BRANCH-AND-BOUND FOR STANDARD QUADRATIC OPTIMIZATION 37

Horst, R. and Thoai, V. N. Modification, implementation and comparison of three algorithms for
globally solving linearly constrained concave minimization problems. Computing 42: 271–289,
1989.

Horst, R. and Thoai, V. N. A new algorithm for solving the general quadratic programming problem.
Comput. Optim. Appl. 5: 39–48, 1996.

Horst, R., Thoai, V. N. and de Vries, J. On geometry and convergence of a class of simplicial covers.
Optimization 25: 53–64, 1992.

Horst, R. and Tuy, H. Global Optimization. Springer, Heidelberg, 1993.
Johnson, D. S. and Trick, M. A. (editors). Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 26. American Mathematical Society, Providence, RI, 1996.

Kuznetsova, A. and Strekalovsky, A. On solving the maximum clique problem. J. Global Optimiz.
21: 265–288, 2001.

Massaro, A., Pelillo, M. and Bomze, I. M. A complementary pivoting approach to the maximum
weight clique problem. To appear in: SIAM J. Optimiz., 2001.

Murty, K. G. and Kabadi, S. N. Some NP-complete problems in quadratic and linear programming.
Math. Programming 39: 117–129, 1987.

Nowak, I. A new semidefinite programming bound for indefinite quadratic forms over a simplex. J.
Global Optimiz. 14: 357–364, 1999.

Phong, T. Q., An, L. T. H. and Tao, P. D. On globally solving linearly constrained indefinite quadratic
minimization problems by decomposition branch and bound method. RAIRO, Rech. Oper. 30:
31–49, 1996.

Quist, A. J., de Klerk, E., Roos, C. and Terlaky, T. Copositive relaxation for general quadratic
programming. Optimization Methods and Software 9: 185–209, 1998.

Raber, U. A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J.
Global Optimiz. 13: 417–432, 1998.

Renegar, J. A mathematical view of interior-point methods in convex optimization. Forthcoming,
SIAM, Philadelphia, PA, 2001.

Stix, V. Global optimization of standard quadratic problems including parallel approaches. Ph.D.
thesis, Univ. Vienna, 2000.

Stix, V. Target-oriented branch-and-bound method for global optimization. Preprint, Univ. Vienna,
2001.

Weibull, J. W. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.


